Sparse MIL
sawmil.smil.sMIL
dataclass
sMIL(
C: float = 1.0,
kernel: KernelType = "linear",
solver: str = "gurobi",
*,
normalizer: Literal[
"none", "average", "featurespace"
] = "none",
p: float = 1.0,
use_intra_labels: bool = False,
fast_linear: bool = True,
scale_C: bool = True,
tol: float = 1e-08,
verbose: bool = False,
solver_params: Optional[Mapping[str, Any]] = None,
)
Bases: NSK
Sparse MIL (Bunescu & Mooney, 2007) implemented on top of NSK.
Training set
- Every negative instance becomes its own 1-instance bag (label -1).
- Every positive bag stays a bag (label +1).
Dual tweaks
- Linear term for positive bags: f_j = 2/|B_j| - 1
- Box constraints: iC for negatives, bC for positives (scaled if scale_C)
Notes
- By default we ignore intra-bag labels (uniform instance weights).
- Use your NSK's bag kernel; mean aggregator with normalizer="none" is a good default.
Source code in src/sawmil/nsk.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
|
fit
fit(
bags: Sequence[Bag] | BagDataset | Sequence[ndarray],
y: Optional[NDArray[float64]] = None,
) -> "sMIL"
Fit the model to the training data.
Source code in src/sawmil/smil.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|