Support Vector Machines
sawmil.svm.SVM
dataclass
SVM(
C: float = 1.0,
kernel: KernelType = Linear(),
solver: str = "gurobi",
tol: float = 1e-06,
verbose: bool = False,
solver_params: Optional[Mapping[str, Any]] = None,
)
Bases: BaseEstimator
, ClassifierMixin
Support Vector Machine solved via the dual QP.
Parameters:
-
C
(float
, default:1.0
) –Regularization parameter. Larger values try to fit the training data more exactly at the cost of a smaller margin.
-
kernel
(KernelType
, default:Linear()
) –Specification of the kernel to use. This can be an instance of a :class:
~sawmil.kernels.BaseKernel
, a callable, or a string understood -
solver
(str
, default:'gurobi'
) –Name of the quadratic program solver backend.
"gurobi"
and"osqp"
are supported. -
tol
(float
, default:1e-06
) –Threshold used to decide whether a Lagrange multiplier is treated as zero when identifying support vectors.
-
verbose
(bool
, default:False
) –If
True
the underlying solver may print progress information. -
solver_params
(Optional[Mapping[str, Any]]
, default:None
) –dict of backend-specific options. Examples: - solver='gurobi': {'env':
, 'params': {'Method':2, 'Threads':1}} - solver='osqp' : {'setup': {...}, 'solve': {...}} or flat keys for setup - solver='daqp' : {'eps_abs': 1e-8, 'eps_rel': 1e-8, ...}
decision_function
decision_function(
X: NDArray[float64],
) -> npt.NDArray[np.float64]
Compute the decision function for the given bags.
Source code in src/sawmil/svm.py
131 132 133 134 135 136 137 138 139 140 141 142 |
|
fit
fit(X: NDArray[float64], y: NDArray[float64]) -> 'SVM'
Fit the model to the training data.
Source code in src/sawmil/svm.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
predict
predict(X: NDArray[float64]) -> npt.NDArray[np.float64]
Predict the labels for the given bags.
Source code in src/sawmil/svm.py
144 145 146 147 |
|
score
score(X: NDArray[float64], y: NDArray[float64]) -> float
Compute the accuracy of the model on the given bags.
Source code in src/sawmil/svm.py
149 150 151 152 153 |
|